Big Data for Official Statistics

Processing Big and Fast Data

 Optimizing Results with a Multi-Model Database

Steven Hagan
Vice President
Oracle Database Server Technologies
October, 2015

Global Digital Data Growth: Exceeds Storage Mfg Growing leaps and bounds by 40+\% YoY!

[^0][^1]Human Race is Generating Data Vastly faster than Making Computer Storage

YOTTABYTES

ZETTABYTES
STORAGE
EXABYTES
PETABYTES

Data Volume \& Variety Generation Explosion Continues Terabytes, Petabytes, Exabytes, Zettabytes

- VIDEO: UAVs, DRONES, SURVEILLANCE
- IMAGERY/Raster: (Satellites, Planes)
- Sensors (IOT), LIDAR, 3D, RFID
- Social Media, Web Scraping, Mobile Phones
- New data products for: Land and Water mgmt, Agriculture, Environment Transportation, Terrain and City Models, SDIs for planning, maintenance, Emergency response, Defense, Intelligence, Consumers Location is a Powerful Organizing Principle
- Semantics, Ontologies --
- Wearable Technologies
- Genomics (DNA Sequencing) , Astronomy
- MULTIPLE VERSIONS OF THE ABOVE

Data Velocity: Real-Time Spatially-aware Streams / Events / Sensors /"Internet of Things" (Evervthing)

Track / Monitor Moving Objects -UAVs, Drones, cars

- Ultra-high throughput
- (1 million/sec++) and microsecond latency
- Sensors on Aircraft Turbine Blades
- Filtering, correlation, and aggregation across event sources

Detect patterns in the flow of events and message payloads, Complex Event Processing (CEP) Business Intelligence in Real Time Mobile Phones

Self-Driving Cars

Processing Big \& Fast Data: Video, Imagery, Sensors, Social, Mobile, ...

Filter, Move, Transform, Analyze, Act - at High Velocity

ANALYZE
Oracle BAM
Oracle Mapviewer
Oracle Business Intelligence
Oracle Information Discovery

ACT

STORE / SAVE / ARCHIVE ?? THE RESULTS

TRENDS: Next 5 years or so

- Computer System Performance -
- Hardware - Evolutionary - Moore’s law still holding
- New possibilities at Research Level - not yet proven
- DNA for Storage; 3D Glass, Holography; Carbon Nanotubes, Graphene
- Software - Disruptive - Parallelism enables clusters of 10,000+ computers, CLOUD
- Software is Supporting many Data types - FLEXIBILITY
- Databases/persistent stores can handle all types of data - Polyglot Persistence
- Software - Graph Storage, Semantics - Add all types of data and build new relationships
- Without disruptive upgrades / schema changes
- Stream data arriving; Filter the data; Keep what matches your requirements; aggregate it
- Deletions: immediately/gradually
- NOTE: TEXT AND NUMBERS ARE NOT THE SPACE PROBLEM!

SPECIAL DATA TYPES: SEVERAL POPULAR DATA MODELS: But Unique separate persistent stores results in: MANY databases to secure \&manage

For National / UN Statistics: MULTI-MODEL Database is Best Many Different Data Models Supported as Native Data Types in

ONE SHARED STORE

- Parallel Database Server has multiple models

- Unified Security Approach
- Highly Available
- Disaster Tolerant
- Shares Main Memory;
more efficient
- Shares Disks, Flash Storage: more efficient
- Managed as a single entity: more efficient
- (ORACLE HAS THIS TODAY)

National Statistics: one Multi-Model Store

External Data Sources:
Transactional \& Operational Systems Contents Repository Databases
Mobile Devices, Web resources
Blogs, Mails, news
Satellite Imagery, UAVs

Real-time Data Streams

Search, Presentation, Report, Visualization, Query

arm-Model Data Management Infirastructure

a Geospatial

Responses and Publishing

SMS Console Alerts

EV Grid Management

Workflow Initiation

Real-time Dashboards

Statistics Data Repurposing: Ontology-driven

 Enable Shared, Actionable KnowledgeApplication Ontologies

- Simple Features
- GeoRaster
- Topology
- Networks
- Gazetteers

Support Breadth of National \& UN Data Above stovepipes

 Data arrives, is filtered, stored data is available to all Statistics Organizations

Semantic Metadata Layer

GUIDANCE: THIS IS AN ARCHITECTURE TO SUPPORT ONE SHARED MULTIPURPOSE NATIONAL STORE

Semantic \& Graph Technology What terms to look for: Buzzwords For Apps \& Workflows using

- Semantic Web
- W3C RDF/OWL/SPARQL
- Graph Data Management
- Social Network Analysis (SNA)
- Knowledge Discovery
- Knowledge Mining
- Big Data
- Schema-less Data
- Property Graphs
- Taxonomy/Terminology Mgmt
- Faceted Search
- Inferencing / Reasoning
- Sentiment Analysis
- Text Mining
- NoSQL Database

Oracle: Graph (Linked Open Data) support: On-premise or in the Cloud

- Highly scalable, secure triple store based on RDF
-1 TRILLION TRIPLE BENCHMARK, leading Triple Store:W3.org

W3C ${ }^{\circ}$ Semantic

- 1.13 million triples per second query performance
- SPARQL and GeoSPARQL in SQL support
- Apache Jena and OpenRDF Sesame pre-integrated
- SPARQL endpoint enhanced with query control
- GeoSPARQL support (classes, properties, datatypes, query functions)

- Forward-chaining based inferencing engine in the database
- Various native rulebases (RDFS, OWL2 RL, SKOS, ...), integration with OWL2 reasonsers (TrOWL, Pellet)
- RDB to RDF mapping on relational data aligned with RDB2RDF standard

Accessible Shared Data: CYBERSECURITY is Major Challenge Requires Information Security and Privacy

Oracle Database

Encryption \& Masking
Access Control
Monitoring
Blocking \& Logging

Monitoring
-Configuration Management

- Audit Vault
- Total Recall

Access Control

- Database Vault
- Label Security

Encryption \& Masking

- Advanced Security
- Secure Backup
- Data Masking

United Nation Analysis - September 2013 Initiative on Global GeoSpatial Information Management

Future Trends

Technology Trends in Data Creation, Maintenance, and Management

Reliance on 'big data' technologies
The right information at the right time
Machine-processable descriptions of data.
Semantic technologies will play an important role

Skills and Training: train the individuals is at least five

Requirement for enhanced Data Management Systems

You Enhance Innovation \& Statistics By Using STANDARDS e.g. - The Spatial Data Domain

ISO

- TC 211; TC 204

Open Geospatial Consortium

- Simple Features; GML; Web Services
- De-facto Standards
- SHP, MGE, DXF, KML

Professional Standards

- ISPRS, FIG, WMO

Java, .NET, Flash
W3C: RDF,OWL, SPARQL, GeoSPARQL

TAGGED METADATA - agree on tags

Public Clouds, Private Clouds: Statistics Platforms

- Used by multiple tenants on a shared basis
- Hosted and managed by cloud service provider

- Exclusively used by a single organization
- Controlled and managed by in-house IT
Private Cloud

PaaS
laas

Public Clouds

N
E
T

Today: More HW/SW Efficiencies: But Labor Costs Growing Innovative Systems for Statistics Needed

Guidance: Do Not Build Your Statistics Solutions From Scratch Long Term Cost of Ownership rises with custom construction \& Open Source

Time to Build

Optimizations

Maintenance

UN-GGIM: "train the individuals is at least five years"

Guidance: Big Data for Official Statistics: Success Enhanced with MULTI-MODEL DATABASE PLATFORM

Big \& Fast Data	Simplify Statistics IT OGC \qquad	Deep Analytics	
\|l	tit sememe	1so	
	E		
P) ${ }^{\text {a }}$	ORACLE Stipen		
Sixam			

On Premise, On Cloud, Shared Services

Shared GeoSpatial Services Location Aware Everything

Fully Parallel and Secure

[^0]: - Chart conservatively assumes a constant 9:1 ratio of unstructured data vs. structured data (based upon IDC's estimate that 90\% of all digital data is unstructured).
 - Chart does not reflect IDC's projection that unstructured data is currently growing twice as fast as structured data at the rate of 63.7% vs. 32.3% CAGR.

[^1]: Source: IDC Digital Universe Study, A Digital Universe Decade - Are Your Ready?, 2010

